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An interactive computer program has been written that computes field lines and

equipotential surfaces for a wide range of field configurations. The mathematical techniqae
and details of the program, the input data, and different modes of graphical representation
are described, and various examples are presented. Possible extensions of the method are

discussed.

I. THE PROBLEM

The use of field lines and equipotential surfaces for
the visualization of vector fields (electrostatic and magne-
tostatic fields, stationary liquid and heat flow fields, sta-
tionary diffusion fields, etc.) is well known. However, the
graphical representations, usually found in textbooks, are
restricted to very simple examples, and often they are only
qualitative. Quantitative pictures of more complex exam-
ples, which are highly desirable for didactical purposes, are
rare. Furthermore, it would be very helpful for students if
they could visualize themselves fields of their own
choice.

We present here a technique that has been developed into
an interactive computer program. It generates graphs of
fields and potentials in two or three dimensions for arbitrary
configurations of point sources, vortices, dipoles, and ho-
mogeneous fields.

In the following we first discuss the mathematical tech-
nique used to compute the field lines. We then quickly re-
view the properties of stationary fields, especially those of
simple singularities (sources and vortices), using simple
continuity arguments. A short description of the program
itself and especially of the necessary input data precedes the
presentation of a number of examples which form the es-
sential part of this paper.

II. MATHEMATICAL APPROACH

It is no problem to obtain the field vector or the potential
value at any point, since the field or potential of each indi-
vidual charge or vortex is known and they have simply to
be added according to the superposition principle. The ac-
tual problem-is to fill all space with suitably spaced field
lines and equipotential surfaces.

Characteristic for a field line is that its tangent is parallel
to the field vector, say E, at all points x. Let a field line be
represented by the function

x = x(2), (1)
where ¢ is a scalar parameter. Therefore

dx

—=fE. 2

o - /E (2)

1160 American Journal of Physics Vol. 44, No. 12, Deceﬁber 1976

The proportionality factor f has to be the same for all three
components of x, but it need not be constant, since only the
tangent vector dx/dt is important. Usually the magnitude
of dx/dt is chosen to be unity, so that Eq. (2) reads!

dx E E
ai " E[ (E) 3

We prefer, however, another choice of the proportionality
factor f, namely one that allows to identify the parameter
t with the potential ¢. We expect that there exists a function
S(E) such that

— = Ef(E) 4

holds. Since we move along the field line where E and dx
are parallel, we have

d¢ =E+dx = Edx,

where dx stands for |dx]|.
Introducing this into (4) yields

dx . _
m—Ef(E). ie., f(E)_Ez’
and finally
dx _dx E
"y BT )

If we have a computer program that integrates ordinary
differential equations in time and that sets marks after equal
time intervals, it can be used to compute a field line and
mark equal potential intervals. A field line with potential
marks determines the complete field vector since the
magnitude of the field strength is inversely proportional to
the distance As between two potential marks:

E = A¢/As = const/As. (6)

Further advantages of Eq. (5) with respect to Eq. (3) are
that there is no need to compute a square root and that, if
the integration is performed in equal steps of ¢, the corre-
sponding steps in x automatically are small at regions of
high field and large where the field is small. This is desirable
from the point of view of numerical accuracy and the effi-
cient drawing of smooth curves.
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IIl. SHORT REVIEW OF THE PROPERTIES
OF SOURCES AND VORTICES

Although electrostatic fields E are usually more exten-
sively studied than the stationary velocity field v of an in-
compressible frictionless liquid, the latter is much better
suited for many didactic arguments because it is more
closely connected to experience.

We use it to review briefly the properties of a single
source and a single vortex.

A. General properties derived from continuity
relations

The liquid flows away from the source along the field
lines of the velocity field. If we define a flow tube as
bounded by field lines, the liquid flows along such tubes.
Liquid can enter or leave the tubes only through sources and
sinks (sources with negative strength). Since the field lines
are orthogonal to equipotential surfaces, these surfaces
intersect the flow tubes at right angles. A flow tube and
three sections A4;, A4;+,, A+, of equipotential surfaces
corresponding to the potentials ¢;, ¢;+1, ¢;+2 are shown in
Fig. 1(a). Since the liquid is incompressible, the volume
flowing through the three surfaces per unit time must be
equal:

(7a)

The field strength v; is inversely proportional to the size of
the corresponding cross section A; of the equipotential
surface. Since the number of field lines penetrating each
surface section of the tube is constant, the number of field
lines per unit area of equipotential surface, i.e., the field
line density in space, is proportional to the field strength,
provided that field lines are started with uniform density
from an equipotential surface very close to the source.

Aiv; = Ait it 1, Uifviv1 = Ai 1/ A

Since—by construction—the potential difference be- -

tween equipotential surfaces is constant and

v; = —grad¢ ~ —A¢/I;, (8a)

where /; is the spatial distance between the equipotential
surfaces, one has

lifA; = lix 1 [Ais 1. (9a)
This means that the ratio between length and front surface
of all pieces of a flow tube bounded by equipotential sur-
faces is constant.

It is very instructive also to consider the special case of
two-dimensional (2D) fields, which can be realized by the
frictionless flow of a liquid between two parallel glass plates.
This case also represents those three-dimensional (3D)
fields which are uniform in one direction, like the electric
field of a cylindrical condenser. In the 2D case the flow
tubes become plane surfaces bounded by field lines and
pieces of equipotential lines as sketched in Fig. 1(b). With
the nomenclature of that figure one easily finds the rela-
tions

UifViet = diyr/d;, (7b)
v; = A¢/d;, (8b)
and
Lijd; = lix1/dis. (9b)
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Fig. 1. Flow tube in the
stationary velocity field of
an incompressible liquid:
(a) three-dimensional
(3D) field; (b) two-di-
mensional (2D) field.

The field strength is now proportional to the number of
. field lines per unit length of equipotential line, i.e., to the
field line density in the plane, provided the field lines were
started equidistantly from an equipotential line very close
to the pole. All quadrangles formed by field lines and
equipotential lines are similar. For the special case /; = d;
they are squares. A square mesh is obtained for the case that
n field lines emanate from a source of strength g by
choosing A¢ = g/n.

B. Field of a single source

A source is a point emitting a constant volume ¢ (called
the strength of the source) of liquid per unit time. (For
negative g one speaks of a sink.) For symmetry reasons the
field lines are straight lines pointing away from the source,
and the equipotential surfaces are spheres around the
source. Since every sphere is penetrated by the volume g per
unit time, we have g = v(r)-4nr?, i.e.,

v=g/4xr2,  v=(q/4xrdr. (10a)

The potential is
6= f’v(r’)-dr’= f’u(r')dr'=4—q-— (11a)

r

if weset ¢ = 0 forr — o,

By analogous reasoning we find that in a 2D field the
(2D) volume q per unit time penetrates every circle, i.e., g
= p(r)2xror

v = qf2wr, v = (q/2xrDr, (10b)

¢ = ﬁ’ v(r')dr’' = ‘I:’u(r’) dr’ = (g/2=) Inr, (11b)
with the convention ¢ = 0 atr = 1.

C. Field of a single straight vortex line

In a 3D field v(r), a line in space is called a vortex line

w=fv~ds;é0,
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Fig. 2. Field of a single source of strength ¢ = 1. (a) Field lines in the two-dimensional (2D) case. Equipotential marks are placed at intervals A¢g = Y.
The potential ¢ = 0 is indicated by larger potential marks. (b) Corresponding potential surface. (c) Field lines in the three-dimensional (3D) case.
Equipotential marks have intervals Ag¢ = 1/16x. (d) Potential surface corresponding to (c).

where the integration is performed along any closed path
which surrounds the line. If the space contains only one
vortex line, the above integral is a constant called the vortex
strength. This is in contrast to the field of a source, in which
every such integral vanishes. We specialize to the case where
the vortex line is straight. The field then must have a cy-
lindrical symmetry with respect to it. The field lines are
circles, because the liquid cannot flow away to infinity since
no source is present that would yield new liquid. The inte-
gral (12) performed along a circle of radius 7 is w = 2wrv.
Therefore

v = w/2ur, v=(wXr)/2nrl (13)

The vector w has the direction of the vortex line and the
magnitude of the vortex strength.

In order to preserve the fact that the number of field lines
per unit length of equipotential line is proportional to the
field strength, the distance d; between two field lines has
to be proportional to r:

Fiv1— 1 = d,’ = ar;, ri+ |/",‘ = const. (14a)
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Therefore the distance of field lines from the vortex should
be chosen to increase in geometric progression; i.e., the
logarithm should increase linearly, since

(14b)

If the vortex line coincides with the z axis, the potential
difference between two points with radius vectors ro and r;
and azimuth angles ag and «; in cylindrical coordinates

is
r @ w
¢=f v-dr=rf vda=(—>(a1—ao).
ro o0 2n

With the convention ¢ = 0 for ag = O the potential of a point
with azimuth « is

ll‘er.l - lnr,~ = const’.

¢ = (w/27)a. (15)

The potential is simply proportional to the point’s azimuth
angle. However, as a many-valued function of the azimuth,
it depends on the number of turns performed around the
vortex line [cf. Fig. 3(b)].
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IV. PROGRAM AND INPUT DATA

The integration of Eq. (5) and the graphical presentation
of the results are performed using the interactive program
“particles and fields,” developed originally to compute and
display particle trajectories in fields.2 The input data to the
program have the form of a matrix of numbers. They can
be classified into the three groups: field data, field line data,
and representation data.

A. Field data

The field is determined by several rows of input data. One
row is required for (a) every point charge (charge and po-
sition), (b) every vortex line (vortex strength, position, and
orientation in space), (c) every dipole (vector of dipole
moment and position), and (d) an external homogeneous
field (constant field vector). The zero level of the potential
is fixed in the program by the following convention. The
potential of a single source is set to zero at unit distance in
the case of 2D fields and at infinity for 3D fields. The po-
tential of a vortex is equal to the product of vortex strength
and azimuth angle. The total potential of several sources,
vortexes, and an external field is found by addition.

B. Field line data

Once the field is given, a field line is uniquely determined
by one point on the field line. For the purpose of graphical
representation an initial potential ¢; and a final potential
¢y are specified, which are used for a whole bundle of field
lines. Every line in the bundle is characterized by its starting
point. If the potential ¢; of the starting point is outside the
region between ¢; and ¢, the field line is drawn from ¢, to
¢y; otherwise, it is drawn from ¢; to ¢y.

The program generates groups of starting points corre-
sponding to bundles of field lines. According to the sym-
metries discussed in Sec. III the following types of groups
are available: (a) for every point charge the field lines are
started evenly spaced on a small circle around the charge;
(b) for every dipole the field lines are started evenly spaced
on two very small circles centered on the dipole axis and
touching each other at the dipole position; (c) for every
vortex the field lines are started on the straight line origi-
nating from the vortex, the distances from the vortex in-
creasing in geometric progression; (d) for a homogeneous
field the starting points are placed equidistantly on a
straight line which should be perpendicular to the field di-
rection and far from any singularities.

C. Representation data

By the integration one obtains for every field line a se-
quence of quadruplets of coordinates

XV Zk, Pk, k=1,2,...,N.

The field lines can be considered as lines in a four-dimen-
sional (4D) space spanned by x, y, z, and ¢. The program
provides three different possibilities of projecting these lines
onto the 2D paper plane. Let us consider the projection to
proceed in two steps: first into a 3D subspace S, and then
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onto the paper plane. If S is the x,y,z space, the resulting
picture will contain the usual field lines.
Two cases can be distinguished:

(a) All field lines stay in the same plane. Then this
plane is chosen to be the paper plane fexamples
in Figs. 2(a) and 2(c)].

(b) The field lines do not stay within one plane, but
are projected perspectively onto a plane [examples
in Figs. 7(a) and 7(b)].

If all the field lines are confined to one plane, one can span
the space S by this plane and the potential. All the field lines
in S are then contained in a 3D surface, the potential sur-
Jace. Equipotential lines are contour lines, and the field lines
are lines of steepest descent on the potential surface. This
surface can again be projected perspectively onto the paper
plane. Examples of this mode of projection are Figs. 2(b)
and 2(d).

D. Off-line version of the program

An off-line version of the computer program is available.
It runs on an IBM 360/65 computer. The input data are
provided on punched cards. The output is drawn on a Cal-
comp plotter.

The program consists of the following parts: (a) decoding
of input data; (b) control of the starting positions of the field
lines; (c) integration of a field line in space—the field lines
are stored as x,y,z,¢-coordinate quadruplets of closely
neighboring points; (d) projection of these points in the
desired mode onto the paper plane, and drawing of this
projection.

E. Interactive version of the program

Easier to handle and well suited for student’s use is the
interactive version of the program which is currently im-
plemented on a PDP-11/45 computer. The user inputs or
modifies the data on a keyboard of a graphic terminal
(Tektronix 4012 storage tube). The output is presented on
the terminal’s screen. In this way one can quickly change
parameters and study the result. Permanent copies can be
made using the Calcomp plotter or a special hardcopy unit
accompanying the storage tube.

F. Portability of the program

The program? is written entirely in FORTRAN IV and
structured so that it can be run using a storage overlay.
There should be no major difficulty implementing it on
other computers with equivalent graphical output facilities,
at least 64 k words of storage and a disk.

V. EXAMPLES

We illustrate the use of the program by a number of ex-
amples, beginning with very simple problems and pro-
ceeding to more complex ones.

A. Single sources and vortices

The field lines of a 2D field in the x,y plane generated by

a single source are shown in Fig. 2(a). For fixed equidistant
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Fig. 3. Field of a single vortex of strength w = 1 situated on the z axis.
(a) Field lines in the x,y plane. Interval between potential marks is A¢ =
56 (b) Potential surface corresponding to {a). The observer’s azimuth
angle is erop, = —34°. The potential is compressed with respect to Figs. 2(b)
and 2(d); a relative scaling factor F, = '§ was used.

potentials (A¢ = const) crosses are placed on the field lines.
They serve a double purpose. Their density indicates the
field strength. Corresponding potential marks on neigh-
boring field lines, if joined by a continuous curve, form
equipotential lines. The equipotential line ¢ = 0 is marked
by larger crosses in all figures. One easily recognizes that
all quadrangles formed by neighboring field lines and
equipotential lines are similar (in fact, they are squares),
as described in Sec. IIT A.

The potential surface corresponding to these field lines
is shown in Fig. 2(b), which is a perspective view of the field
lines in x,y, ¢ space. (For all pictures of potential surfaces
in this paper the observer’s optical axis is inclined down-
wards. It forms an angle of 30° with the x,y plane. Apart
from the double-sized marks of the zero potential, all po-
tential marks have the same size in space. Hence, their
apparent size in the perspective projection is a useful clue
to depth.)

Next we consider the 3D field of a single source. The
source is situated in the origin. The field lines in the x,y
plane are shown in Fig. 2(c). Since neither the field lines nor
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Fig. 4. Two-dimensional (2D) field of a source (¢ = 1) and a vortex (w
= 1) both in the origin of the x,y plane. (a) Field lines Ag = '4¢. (b) Po-
tential surface, Fy = . In x,y projection the outermost field line at the
upper right would coincide with the innermost field line at the bottom.

the equipotential marks can be resolved optically near the
pole, a circle has been left empty in that region. The qua-
drangles formed by field lines and equipotential lines are
no longer similar. The potential surface is shown in Fig.
2(d). In comparison with Fig. 2(b) it is much steeper at
small distances and much flatter at large distances from the
pole [cf. Egs. (10)].

The field of a single vortex is illustrated in Fig. 3. Field
lines are shown in Fig. 3(a), and potential surface for the
azimuth range 0 < a < 2= is shown in Fig. 3(b). It repre-
sents the principal value of the potential (15). The extreme
points of each field line have the same azimuth. They mark
a cut in the potential surface. By continuation of the po-
tential surface to azimuth angles <0 or >2 the potential
becomes many valued.

Figure 4(a) shows a 2D field generated by a source and
a vortex at the same position. The pattern of field lines, of
course, resembles the flow of water running out of a nearly
empty bathtub. The corresponding potential surface [Fig.
4(b)] resembles a snail shell in the region around its axis.
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Fig. 5. Field lines in the x,y plane of two identical sources (¢; = > = 1). (a) Two-dimensional (2D) field, x; = —x3 = 0.5, A¢p ~ 'h¢ (A¢ was chosen 7 %o
less than Y, in order to place a potential mark on the saddle point). (b) Potential surface of two-dimensional (2D) field, observer’s azimuth ayps =
—101°, Fy = 'h. (c) Three-dimensional (3D) field, x; = —x» = 0.5, A¢ = 1/8x. (d) Potential surface corresponding to (c), aops = —101°, Fy, = 4.

B. Two and more poles

The 2D field generated by two identical sources is shown
in Fig. 5. Figure 5(a) is a picture of field lines; Fig. 5(b) is
a perspective view of the potential surface. If again we
identify the field with the velocity field of a liquid, we see
that the liquid flows away from both sources but that liquid
never crosses a straight line which divides the plane sym-
metrically. This straight line is itself a field line, which
however does not originate from a source. It can neverthe-
less be drawn by our program using the following “trick.”
The field lines do not begin with azimuth 0, Aw, 2Aa, . . .,
but with ¢, Aa + €, 2Aa + ¢, . . ., where € is a very small
angle (¢ = 0.001° for a 3D and 0.0001° for a 2D field).
Thus the field line starting from the left-hand source to the
right-hand runs slightly above the line connecting both
sources. Since in the midpoint of the connecting line the
field has a saddle point, near that point the field line changes
its direction by practically 90° and now runs very nearly
upwards in Fig. 5(2). Similarly, the field line running from
the right-hand source towards the left-hand changes its
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direction and runs downwards. The central point is distin-
guished by the fact that the field vanishes there. Under these
conditions two (or even more) field lines and potential lines
are allowed to cross. In this way the singular straight field
line is in fact composed of two halves. Since the central field
line is straight, the right-hand (and the left-hand) part of
the picture can also be interpreted as the field lines of a
single source placed near an impermeable wall. The char-
acteristics of the field become very clear by looking at the
potential surface in Fig. 5(b). Figures 5(c) and 5(d) illus-
trate the field of two equal sources in the 3D case.
Comparison of Fig. 5(c) with Fig. 5(a) again shows that
field lines and equipotential lines no longer form squares
since liquid can now flow “into the third dimension,” i.e.,
perpendicular to the paper plane. This is conspicuous for
the field lines near the horizontal axis through the sources:
the liquid flowing within a narrow cone from one source
towards the symmetry plane can spread in all directions
along this plane and the field lines originally bounding the
cone for continuity reasons come very near to the plane.
The 3D field of a source and a sink of equal strength (g1

S. Brandt and H. Schneider 1165



Fig. 6. Three-dimensional (3D) field in the x,y plane of two sources of opposite strength. (a) g, = —@:= 1, x1==x3=05A¢ =

(b)

""lllllllmﬂ..‘c“\ PRTENTIAL SURFALE
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(d)

1/8x. Large crosses

mark ¢ = 0. (The crosses drawn for marking the positions of the charges should not be interpreted as being the signs of the charges.) (b) Potential surface

corresponding to (a), aops = —110°, F,
of a dipole as in (c), agps = —110°, Fy = 1.

= —q,) is illustrated in Figs. 6(a) and 6(b). All the liquid
flows from the source (on the right) to the sink. The sym-
metric line between both is now not a field line but an
equipotential line (¢ = 0). Again the structure of the field
can most easily be seen from the potential surface. The
symmetry line divides the field into regions of positive (right
half-plane) and negative (left half-plane) potential. At in-
finity the potential approaches ¢ = 0.

By decreasing the distance a between the two sources but
keeping the product d = aq constant in the limit @ — 0, one
obtains the field of a dipole of moment d. The corresponding
field lines and potential surface are shown in Figs. 6(c) and
6(d). The symmetry line is an equipotential line. The po-
tential undergoes a discontinuity from — to +,

An impression of the field in space generated by two
sources of opposite charge, i.e., a spatial representation of
the field of Fig. 6(a), is given in Figs. 7(a) and 7(b). They
are a pair of stereo pictures of the field lines between one
of the two sources and the symmetry plane between them.
This field pattern would also arise if a single charge were
placed in front of a metal surface. The position of the

1166 Am. J, Phys. Vol. 44, No. 12, December 1976

Fy = 1.(c) Dipole of strength 4 = 1 and orientation in x direction at the origin, Ag =

1/8x. (d) Potential surface

sources and of the eyes of the observer are given in the figure
caption. The field lines are seen through the symmetry
plane. The potential marks are 3D crosses with one axis in
the direction of the field. Using the crosses at the end points
of the field lines, it can easily be seen that the field is per-
pendicular to the symmetry plane. Since the field lines were
started symmetrically from the source, the end points mark
concentric circles on the plane. ‘
Different fields generated by four sources placed on the
corners of a square are shown in Fig. 8 for four equal sources
and in Fig. 9 for sources of equal strength but alternating
sign. The most prominent difference between the 2D field
[Figs. 8(a) and 8(b)] and the section through the 3D field
[Figs. 8(c) and 8(d)] is that for continuity reasons there can
be no liquid flow towards the center in the 2D case. In the
3D case liquid can flow towards the center and then “es-
cape” into the third dimension. Near the center the flow
tubes make a sharp turn out of the paper plane. This can
also be seen from the potential surfaces. Only in the 3D case
is.there a depression of the potential near the center. If the
sources are positive electric charges, the motion of a free

S. Brandt and H. Schneider 1166
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Fig. 7. Field lines in three dimensions between a charge (g = 1, x = y = 0, z = 1) and a metal surface with potential ¢ = 0 in the x,y plane. There are
92 field lines starting isotropicaily from the charge. The highest potential on the lines is ¢ = 1/2x. The potential interval between the marks is A¢ =
1/20x. (a) and (b) are stereoscopic views. The observer positions are: (a) x = 5.06, y = 4.17, z = —4.59 (left eye); (b) x = 4.43, y=483,z=-459
(right eye).
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Fig. 8. Field of four equally strong sources (g = 1) placed on a square around the origin in the x,y plane (x; = x, = —x2 = —x3 = 05, y1=y,=—y;
= —y4 = 0.5). (a) Two-dimensional (2D) field, A¢ ~ Vs (b) Corresponding potential surface, agps = —87.5°, F, ='%. (c) Three-dimensional (3D)
field. Field lines in the x,p plane, A¢ = 0.2933/4x. The innermost equipotential line consists of two closed curves that intersect each other. (d) The
corresponding potential surface, agps = —87.5°, Fy = .
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Fig. 9. Field of four sources with equal strength (|¢| = 1) but alternating
sign, placed on a square around the origin in the x,y plane (x; = x4 = —x;
= —x3=0.5,y =y = —y3; = —y4 = 0.5). (a) Two-dimensional (2D)
field, Ag = Yso. (b) The corresponding potential surface, aghs = —58°, Fy
=

positive charge can be confined to a limited region around
the center, provided it can be kept in the plane of the
sources.

C. More complex fields

The 3D field generated by two special configurations of
three charges situated on a straight line is shown in Figs.
10(a) and 10(b). These fields are described in the textbook
by Durand (Ref. 3, Vol. I, pp. 115 and 117, respectively).
Each of the two fields possesses a distinguished equipo-
tential surface.

In the field of Fig. 10(a) there exists a circular equipo-
tential line, i.e., a spherical equipotential surface in space.
The field outside that surface could also have been obtained
by replacing the two sources at the left by an insulated
conducting sphere in the place of the spherical equipotential
surface.

In Fig. 10(b) two orthogonally intersecting spheres of
different radius form an equipotential surface which sur-
rounds all three charges. The field outside that surface can
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Fig. 10. Field lines in the x,y plane of the three-dimensional (3D) field
generated by three charges situated on the x axis. (a) ¢; = 1,42 = —1, 43
=2;x; =0, x5 =0.5, x3 = 2. The interval between equipotential surfaces
is A¢ = 1/8x. For ¢ = +1/4n the equipotential surface is a sphere. It is
the surface extending furthest to the left. (b) ¢, = 2.0,4, = —1.2, g3 =
1.5;x)=—1.6,x,=0,x3=09, A¢ = 1 /8x. At ¢ = +1 /4 there are two
spherical equipotential surfaces (those extending furthest to the left and
furthest to the right) which intersect orthogonally.

also be realized by constructing a metallic surface from two
truncated spheres and placing on it the total electric
charge.

The superposition of a homogeneous field and the field
of a negative and a positive point charge of equal strength
is given in Fig. 11. Comparison with Fig. 6 shows that the
field lines originating from the point sources are now con-
fined to a limited region around the sources. This region is
bounded by a singular field line. In the potential plane the
extreme points of this region are saddle points.

So far in this section we have discussed fields generated
by sources and a homogeneous field. We conclude it with
two figures involving vortices.

Figure 12 shows the two-dimensional field of a single
source and a single vortex. The field lines which start from
the source are distorted by the presence of the vortex. Near
the vortex there is a region with closed field lines. In the
potential plane picture this region is represented by a helical
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Fig. 11. (a) Three-dimensional (3D) field of two equal charges of opposite
sign placed in a homogeneous field, ¢, = —g2 =1, x, = —x, = —0.5, y,
=yy=0,E,=1/4m E, = E. = 0,A¢ = 0.39688 /4x. (b) Corresponding
potential surface, Agps = —=75°, Fy = 1.

surface, which is embedded into the potential surface
dominated by the pole. The total potential has a disconti-
nuity line extending from the vortex to the bottom right of
the picture. In Fig. 12(b) this line is drawn once for the
lower and once for the upper potential.

The field of a single vortex in a homogeneous field is
represented in Fig. 13. Such a field arises if a current-
carrying wire is placed in a homogeneous magnetic field or
a rotating cylinder in a homogeneous flow field.

D. Fields and particle trajectories

The program allows field lines and the trajectories of
particles in the field to be drawn at the same time; likewise,
it can display particle trajectories on potential surfaces.
Examples are shown in Figs. 14 and 15.

The orbit of a positively charged particle around two
fixed negative charges is shown in Fig. 14(a). The initial
conditions were chosen in such a way that the particle mo-
tion is confined to a plane. The potential surface for that
plane is reproduced in Fig. 14(b) together with the particle

1169 Am. J. Phys. Vol. 44, No. 12, December 1976

e T

™.
~

PERRGRL SUAGUT
N <

< \ A

Y
Ny
PPN AR
: « ¥ "/{*,./’

NP

e gt

- >

Fig. 12. (a) Two-dimensional (2D) field of a source (¢ = 1, x = 1,y =
0) and a vortex (w = 1, x = 0,y = 0), Ap = 5. (b) Corresponding po-
tential surface, aghs = —140°, F = Y. In x,y projection the lowest field
line at the upper right coincides with the upper field line at the bottom
right.

trajectory on the surface. The picture represents a me-
chanical analog of the motion of a charged particle in an
electric field, namely, the motion of a little ball on a rigid
object of the form of the potential surface under the influ-
ence of gravity. One observes that the particle is fast in re-
gions of low potential and slow where the potential is high
(transformation from kinetic to potential energy).

Another example is the motion of an electrically charged
particle in the field of a magnetic dipole. In a magnetic field
the particle experiences a Lorentz force perpendicular to
the field and to its own velocity. Figure 15 shows how a
charged particle can be “trapped” between converging
magnetic field lines. It can serve as an illustration of the Van
Allen radiation belt, which consists of charged particles
trapped in the earth’s magnetic field.

VI. POSSIBLE EXTENSIONS

The method of interactive computer construction of field
lines and equipotential surfaces can be extended in several

S. Brandt and H. Schneider 1169



e e EME N - .
- VIRTE R 5 QMU NEUGD hee L i
N —_ - 4
Rl e e PR
e ey - + * - -
- - P - .
o ~ o > -
T - Ty \,’ JOR * . T
. . . -
> \\ B b s a
- “ N . .
e - e x -
. Y ~ - x .
~ A et . - - = o o
e Tl *- e x e -
T R A - -
- ’\ *
-~ - \ x * x
\.

e T

e e

(b)

Fig. 13. Superposition of a two-dimensional (2D) homogeneous field of
strength E, = 1 /2x in the y direction and a vortex at the origin having
= 1. The zero level of the potential (large crosses) would coincide with the
y axis if the vortex were absent. (a) Field lines in the x,p plane, A¢ = .
(b) Potential surface, agps = =75°, Fy = Y. In x,y projection the lowest
field line at the upper right is the same as the highest field line at the bottom
right.

ways. We mention two examples which are of interest for
both physicists and mathematicians.

A. Solutions of potential equations

So far in our program only those fields are used which can
be simply computed by superposition of a homogeneous
field and the fields of sources, vortexes, and dipoles. For the
case of an arbitrary charge distribution in space the field
has to be found by solving the potential equation for that
distribution, usually under given boundary conditions.
Programs for solving such problems numerically (by the
method of finite differences) exist. Difficulties arise for
vortices and dipoles and for field areas extending to infinity.
There are problems in distributing field lines, i.e., finding
appropriate starting points, at least in the 3D case. How-
ever, at least for a restricted class of problems it is possible
to extend the existing programs to include the solution of
potential equations.
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Fig. 14. Motion of a positively charged particle (¢ = 47) of unit mass
in the field of two negatively charged poles (¢, = g = —0.125, x, = —x;
= 0.5,y = y; = 0). The difference between equipotential marks is A¢ =
1/64x. The particle’s initial conditions are tp = 0, xo = 0.6845, yo = 0,
X0 = 0, yo = 1.145. The particle is shown as a small sphere on its trajectory
after time intervals At = 0.2. (a) Field lines and trajectory in the x,y plane.
(b) Potential surface and trajectory in x,y ¢ space, aops = —105°, Fy =

PHUTON IN EHRTH'S MEONETIC FIELD

Fig. 15. Trajectory of a charged particle in a magnetic dipole field. The
field lines are started on a circle—not on an equipotential line like in Fig.
6(c). The particle starts at the full black circle. Its starting direction is
perpendicular to the picture plane. About three-fourths of a period of the
oscillation between the northern and southern hemispheres is drawn.
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B. Conformal mapping

For 2D fields one can formally identify the Cartesian
coordinates x and y with the real and imaginary parts of a
complex number z = x + iy. An analytic function w(z) =
¢ + iy has the property that ¢(z) and ¥(z) simultaneously
satisfy the Cauchy-Riemann differential equations dy;/dx
= —3¢/dy, dY/dy = d¢/dx. By repeated partial differen-
tiation they yield V2§ = V2¢ = 0. Because of these prop-
erties (orthogonality of lines of constant ¢ and lines of
constant , fulfillment of the Laplace equation) lines of
constant ¢ can be identified with field lines and lines of
constant ¢ with equipotential lines. A uniform field in the
x direction, which is described by a rectangular grid of y
and ¢ lines, is thus represented by the analytic function w
= const-z. Other fields can often be obtained elegantly from
the uniform field by a conformal transformation, the field
line picture from the rectangular grid by conformal map-
ping (see, e.g., Refs. 3-5).

By incorporating this technique into our program it
would be possible to familiarize the student with the con-
nection between electrostatics and the theory of func-
tions.
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Deep in the human unconscious is a pervasive need for a logical universe that makes
sense. But the real universe is always one step beyond logic.

—Frank Herbert
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